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Scientific objectives
q Quantify the impact of the COV-19 lockdown on ozone pollution over Europe

q Analyze the link with photochemical regimes : NOx-limited & VOC-limited

Which approach ?

èSynergism of satellite observations, in-situ data and a chemistry-transport model

The new multispectral satellite data 
“IASI+GOME2”

èEnhanced sensitivity to near-surface O3



Observations

Approach to study the impact of COVID19 lockdown
on ozone pollution (1/3)

Satellite

In-situ
2020 vs 2019

Chemistry-transport model 2020 (with reduced emissions COVID)
vs 2020 (standard emissions)

Ambiguity on differences in meteorological conditions

Ambiguity on emissions during COVID lockdown

Comparison & Adjustment for differences meteorological conditions

Complexity 
è Secondary pollutant with non-linear effects according to NOx-limited and VOC-limited regimes



Synergism of co-localized IR and UV measurements

Profile O3

Atmospheric and 
surface conditions

UV (VLIDORT)

Radiative transfer 
models

IR (KOPRA)

Reflectance UV

Simulated Spectra

Observed spectra

Radiance IR

Simultaneous 
minimisation of IR 
and UV residuals

GOME2

IASI

Adjusting a 
unique O3 

profile

Iterations

Increased sensitivity in 
the lowermost 

troposphere Al
tit

ud
e 

(k
m

)

40

12

3
0 O3 (ppm)

Satellite observations: The IASI+GOME2 multispectral approach
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April 2020 (COVID emissions), April 2020 (reference emissions) & April 2019

Model-derived COVID lockdown effect

20 x 20 km2  - 9 vertical levels
Anthropogenic emissions from HTAP v2.2
Meteorological fields from the BOLAM model
MEGAN biological emissions
COVID run : 
↓ road traffic, ↓ industry, ↓ airplane & ship traffic (% from CAMS covid inventory)

𝚫 Meteorology correction for observations

The chemistry-transport transport model CHIMERE

CHIMERE v2017 (Menut et al., 2020) 



IASI+GOME2 satellite observation In situ surface
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Satellite IASI+GOME2 vs Surface In situ

Good satellite/in situ agreement on spatial 
distribution and concentrations in absolute value!

Agreement with regimes from
Beekmann and Vautard, 2010

1-15 April

O3 (2020) – O3 (2019) è Lockdown effect + 𝚫Meteorology 

In situ measurements at the surface
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Satellite IASI+GOME2 vs Surface In situ

Clear signatures from VOC-limited & NOx-limited regimes from Beekmann and Vautard, 2010

1-15 April

O3 (2020) – O3 (2019) è Lockdown effect + 𝚫Meteorology 

In situ measurements at the surface
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VOC-limited  
↓ Titration NO è ↑ O3

NOx-limited
↓ NOx è ↓ O3

Intermediate
regime



IASI+GOME2 satellite observation In situ surface
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Satellite IASI+GOME2 vs CHIMERE model

1-15 April

O3 (2020) – O3 (2019) è Lockdown effect + 𝚫Meteorology 

CHIMERE simulations

O
3 (ppb)  <  3 km

O
3 (ppb)  surface

Not very clear signatures from VOC-limited & NOx-
limited regimes
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show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.

C. Ordóñez, J.M. Garrido-Perez and R. García-Herrera Science of the Total Environment 747 (2020) 141322

3

show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.

C. Ordóñez, J.M. Garrido-Perez and R. García-Herrera Science of the Total Environment 747 (2020) 141322

3

show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.

C. Ordóñez, J.M. Garrido-Perez and R. García-Herrera Science of the Total Environment 747 (2020) 141322

3

show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly
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tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.

C. Ordóñez, J.M. Garrido-Perez and R. García-Herrera Science of the Total Environment 747 (2020) 141322

3

show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
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treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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COVID-19 lockdown impact on O3 pollution

Agreement over France, Benelux and Italy. 
The model : è underestimates the accumulation of O3 over the Po Valley 

è overestimates that over Germany and Poland
è Misses the large-scale reduction 
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Summary
1. This “Satellite + In situ + Model”  approach shows the following Covid-19 lockdown impacts 

on ozone: 
èO3 reduction in most NOx-limited regions and at large scale
èO3 accumulation over Northern Europe

2. The new IASI-GOME2 satellite approach shows good agreement with photochemical 
regimes and with in situ measurements at the surface

3. We derive an adjustment for the effect of meteorological for observation-assessment of 
COVID-19 lockdown impact using CHIMERE simulations. 

4. IASI-GOME2, In-situ vs. CHIMERE : Fair relative agreement on regimes over 
France/Italy/Spain, but differences in sign over Germany/Poland and the significant 
background large-scale decrease associated with the lockdown is missing in the model

è See more details in Cuesta et al., ACPD paper currently in discussions


